THE CLINICAL UTILITY OF CIRCULATING TUMOR DNA (CTDNA) IN BREAST CANCER: FROM DIAGNOSIS TO TREATMENT RESPONSE _A NARRATIVE REVIEW

Authors

  • Sidra Jabeen The Superior University, Lahore, Pakistan. Author
  • Asma Tariq Bahria University Health Sciences Campus, Naval Anchorage, Islamabad, Pakistan. Author
  • Ayesha Kashif Bahria University Health Sciences Campus, Naval Anchorage, Islamabad, Pakistan. Author
  • Huma Marwat Riphah International University, Islamabad, Pakistan. Author
  • Sundas Ahmad University of Sargodha, Sargodha, Pakistan. Author
  • Muhammad Saad Masood University of Sargodha, Sargodha, Pakistan. Author
  • Ahmed Riaz University of Sargodha, Sargodha, Pakistan. Author
  • Arslan Shakeel University of Sargodha, Sargodha, Pakistan. Author
  • Muhammad Umar The Superior University, Lahore, Pakistan. Author

DOI:

https://doi.org/10.71000/bvnnp730

Keywords:

Circulating tumor DNA (ctDNA), , Liquid biopsy, Breast cancer, Minimal residual disease (MRD), , Precision oncology, , Next-generation sequencing (NGS),

Abstract

Background: Breast cancer remains a leading cause of cancer-related morbidity and mortality among women worldwide, highlighting the urgent need for more accurate, minimally invasive diagnostic and monitoring tools. Circulating tumor DNA (ctDNA), derived from tumor cell apoptosis, necrosis, or active secretion, has emerged as a promising biomarker capable of providing real-time insights into tumor dynamics. Its use in oncology aligns with the growing shift toward precision medicine, offering the potential to overcome the limitations of conventional tissue biopsy and imaging techniques.

Objective: This narrative review aims to explore the clinical utility of ctDNA in breast cancer—from early detection and disease monitoring to prognostication and treatment response evaluation—while addressing current challenges and future directions in its clinical application.

Main Discussion Points: Recent advancements in ctDNA detection technologies, including digital PCR and next-generation sequencing (NGS), have enhanced analytical sensitivity and broadened clinical applicability. The review discusses ctDNA’s role in detecting minimal residual disease (MRD), identifying resistance mutations, and tracking therapeutic efficacy across different breast cancer subtypes. Furthermore, it examines limitations such as biological variability, clonal hematopoiesis, assay standardization, and cost-effectiveness, emphasizing the need for robust validation and regulatory frameworks to support clinical integration.

Conclusion: CtDNA-based liquid biopsy represents a paradigm shift in breast cancer management, enabling personalized and dynamic patient care. However, its translation into routine practice demands multicenter validation, technological standardization, and equitable global accessibility to fully harness its potential in precision oncology.

Author Biographies

  • Sidra Jabeen, The Superior University, Lahore, Pakistan.

    Department of Allied Health Sciences, The Superior University, Lahore, Pakistan.

  • Asma Tariq, Bahria University Health Sciences Campus, Naval Anchorage, Islamabad, Pakistan.

    Bahria University Health Sciences Campus, Naval Anchorage, Islamabad, Pakistan.

  • Ayesha Kashif, Bahria University Health Sciences Campus, Naval Anchorage, Islamabad, Pakistan.

    Bahria University Health Sciences Campus, Naval Anchorage, Islamabad, Pakistan.

  • Huma Marwat, Riphah International University, Islamabad, Pakistan.

    Riphah International University, Islamabad, Pakistan.

  • Sundas Ahmad, University of Sargodha, Sargodha, Pakistan.

    Sargodha Medical College, University of Sargodha, Sargodha, Pakistan.

  • Muhammad Saad Masood, University of Sargodha, Sargodha, Pakistan.

    Sargodha Medical College, University of Sargodha, Sargodha, Pakistan.

  • Ahmed Riaz, University of Sargodha, Sargodha, Pakistan.

    Sargodha Medical College, University of Sargodha, Sargodha, Pakistan.

  • Arslan Shakeel, University of Sargodha, Sargodha, Pakistan.

    Sargodha Medical College, University of Sargodha, Sargodha, Pakistan.

  • Muhammad Umar, The Superior University, Lahore, Pakistan.

    Department of Allied Health Sciences, The Superior University, Lahore, Pakistan.

References

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

Bray, F., Soerjomataram, I., & Laversanne, M. (2022). Cancer burden in low- and middleincome countries: Understanding patterns and trends to inform control strategies. Nature Reviews Cancer, 22, 263–278.

Perou, C. M., Sørlie, T., Eisen, M. B., et al. (2022). Molecular portraits of breast tumors: 20 years later. Nature Reviews Cancer, 22(3), 195–206.

Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2024). Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74(1), 7–33.

Miglioretti, D. L., Zhu, W., Kerlikowske, K., Sprague, B. L., Onega, T., & Buist, D. S. (2021). Breast cancer screening performance in women with dense breasts in community practice. JAMA Internal Medicine, 181(5), 663–671.

Nishino, M., Ramaiya, N. H., Hatabu, H., & Hodi, F. S. (2022). Monitoring immunecheckpoint blockade: response evaluation and biomarker development. Nature Reviews Clinical Oncology, 19(2), 97–111.

Li, C., Fan, Y., Lan, X., & Liu, Z. (2022). Clinical utility of serum biomarkers in breast cancer: A critical review. Clinical Breast Cancer, 22(5), e611–e621.

Wan, J. C. M., Massie, C., Garcia-Corbacho, J., et al. (2023). Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nature Reviews Cancer, 23(2), 93– 111.

Ignatiadis, M., Sledge, G. W., & Jeffrey, S. S. (2021). Liquid biopsy enters the clinic— implementation issues and future challenges. Nature Reviews Clinical Oncology, 18(5), 297–312.

Heitzer, E., Haque, I. S., Roberts, C. E. S., & Speicher, M. R. (2023). Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics, 24(4), 197–213.

Mavridis, K., Tzachanis, D., & Koutsoukos, K. (2022). Clinical applications of circulating tumor DNA in breast cancer: Current landscape and future directions. Cancer Treatment Reviews, 107, 102412.

Heitzer, E., Haque, I. S., Roberts, C. E. S., & Speicher, M. R. (2023). Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics, 24(4), 197–213.

Ignatiadis, M., Sledge, G. W., & Jeffrey, S. S. (2021). Liquid biopsy enters the clinic— implementation issues and future challenges. Nature Reviews Clinical Oncology, 18(5), 297–312.

Mavridis, K., Tzachanis, D., & Koutsoukos, K. (2022). Clinical applications of circulating tumor DNA in breast cancer: Current landscape and future directions. Cancer Treatment Reviews, 107, 102412.

Fackler, M. J., Umbricht, C. B., Williams, D., Argani, P., Cruz, L. A., Merino, V. F., ... & Sukumar, S. (2022). Genome-wide methylation analysis identifies genes specific to earlystage breast cancer. Science Translational Medicine, 14(628), eabc8477.

Daly, M. B., Montgomery, N. D., Palaniappan, L., & Varma, S. (2023). Detection of tumor DNA in breast milk: A potential screening tool in pregnancy. Nature Communications, 14, 2561.

Bidard, F. C., et al. (2024). Circulating tumor DNA to guide treatment in metastatic breast cancer: A prospective multicenter study. Nature Medicine, 30(3), 458–468.

Cristofanilli, M., et al. (2024). Longitudinal ctDNA monitoring in breast cancer: Implications for early therapeutic decision-making. Journal of Clinical Oncology, 42(7), 1234–1243.

Johnston, S. R. D., et al. (2024). Camizestrant in patients with advanced ER+/HER2− breast cancer and ESR1 mutations detected via ctDNA: Results from the SERENA-6 trial. The Lancet Oncology, 25(5), 456–467.

Cohen, J. D., et al. (2024). Ultra-sensitive ctDNA-based MRD detection in early-stage breast cancer: Tumor-informed and agnostic approaches. Nature Medicine, 30(4), 489–498.

Stetson, D., Labrousse, P., Russell, H., Shera, D., Abbosh, C., Dougherty, B., Barrett, J. C., Hodgson, D., & Hadfield, J. (2024). Next-Generation Molecular Residual Disease Assays: Do We Have the Tools to Evaluate Them Properly?. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 42(23), 2736–2740.

Shim, H., Heo, S., Sun, J., Choi, M. K., Park, S. C., Hong, C. W., Kim, S. H., Park, S. Y., Kong, S. Y., & Baek, J. Y. (2025). Clinical Utility of Monitoring Circulating Tumor DNA

Xi, J., Ma, C. X., & O’Shaughnessy, J. (2024). Current clinical utility of circulating tumor DNA testing in breast cancer: A practical approach. JCO Oncology Practice, 20(11), e1745– e1754.

E., Shankar, N., Lei, G., Stout, T. J., Hutchinson, K. E., Schutzman, J. L., … Jhaveri, K. L. (2024). Inavolisib-Based Therapy in PIK3CA-Mutated Advanced Breast Cancer. The New England journal of medicine, 391(17), 1584–1596.

Zhang, C., Li, N., Zhang, P., Jiang, Z., Cheng, Y., Li, H., & Pang, Z. (2024). Advancing precision and personalized breast cancer treatment through multi-omics technologies. American journal of cancer research, 14(12), 5614–5627.

Orsini, A., Diquigiovanni, C., & Bonora, E. (2023). Omics Technologies Improving Breast Cancer Research and Diagnostics. International journal of molecular sciences, 24(16), 12690.

Kim, H.-K., An, J. A.-R., Smith, C. G., Kim, J., Cabel, L., Moiso, E., Ferraro, E., … Razavi, P. (2024). Personalized circulating tumor DNA for minimal residual disease and dynamic assessment in patients undergoing neoadjuvant chemotherapy for breast cancer: Preliminary analysis from MSK-LINC. Journal of Clinical Oncology, 42(16_suppl), 3049.

Turner, N. C., Im, S. A., Saura, C., Juric, D., Loibl, S., Kalinsky, K., Schmid, P., Loi, S., Sunpaweravong, P., Musolino, A., Li, H., Zhang, Q., Nowecki, Z., Leung, R., Thanopoulou, E., Shankar, N., Lei, G., Stout, T. J., Hutchinson, K. E., Schutzman, J. L., … Jhaveri, K. L. (2024). Inavolisib-Based Therapy in PIK3CA-Mutated Advanced Breast Cancer. The New England journal of medicine, 391(17), 1584–1596

Downloads

Published

2025-10-28