CRISPR-BASED APPROACHES FOR THE DETECTION AND TARGETING OF LUNG CANCER BIOMARKERS: A NEW ERA IN PRECISION ONCOLOGY

Authors

  • Ibtasam Mazhar Sargodha Institute of Health Sciences, Sargodha, Pakistan Author
  • Maimona Sadia Government College University, Faisalabad, Pakistan Author
  • Muhammad Hassam Saleem Islamic International Institute of Sciences, Multan, Pakistan Author
  • Ateeqah Siddique Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan Author
  • Areeba Musferah Cholistan University of Veterinary and Animal Sciences (CUVAS) Bahawalpur 63100, Pakistan. Author
  • Areej Safdar The Women University, Multan, Pakistan. Author
  • Anood Malik Islamic International Institute of Sciences, Multan, Pakistan Author

DOI:

https://doi.org/10.71000/25yfnz11

Keywords:

CRISPR-Cas12a, CRISPR-Cas9, , Lung cancer, Biomarkers, EGFR mutation, KRAS G12C, ALK rearrangements, , Circulating tumor DNA, Gene editing, Precision oncology

Abstract

 

Background: Accurate and early identification of lung cancer biomarkers is crucial for effective management yet remains a clinical challenge. CRISPR-based technologies provide highly sensitive and specific tools that can be adapted for both diagnostic and therapeutic use in oncology.

Methods: A prospective study was conducted including 120 patients with confirmed lung cancer and 60 healthy individuals as controls at a tertiary care center. A CRISPR-Cas12a diagnostic platform was developed to detect EGFR exon 19 deletions, KRAS G12C mutations, and ALK rearrangements in tumor tissue and plasma samples. In parallel, CRISPR-Cas9 editing was applied to patient-derived lung cancer cell cultures to selectively disrupt EGFR mutant alleles. The diagnostic performance of the CRISPR assay was compared against conventional PCR and next-generation sequencing (NGS).

Results: The CRISPR-Cas12a assay successfully detected as few as 10 DNA copies/µL within one hour. In tissue samples, the assay achieved 96.7% sensitivity and 98.3% specificity relative to NGS. In circulating tumor DNA extracted from plasma, sensitivity reached 92.1%. Functional assays demonstrated that CRISPR-Cas9-mediated disruption of EGFR mutations reduced cell viability by approximately 65% and suppressed downstream oncogenic signaling pathways.

Conclusion: CRISPR-based strategies demonstrate considerable promise for both precise detection and targeted intervention in lung cancer. The integration of CRISPR diagnostics with gene-editing applications could significantly advance precision oncology by enabling earlier diagnosis and patient-tailored therapeutic options.

 

Author Biographies

  • Ibtasam Mazhar, Sargodha Institute of Health Sciences, Sargodha, Pakistan

    Department of Medical Laboratory Technology, Sargodha Institute of Health Sciences, Sargodha, Pakistan

  • Maimona Sadia, Government College University, Faisalabad, Pakistan

    Department of Microbiology, Government College University, Faisalabad, Pakistan

  • Muhammad Hassam Saleem, Islamic International Institute of Sciences, Multan, Pakistan

    Department of Allied Health Sciences, Islamic International Institute of Sciences, Multan, Pakistan

  • Ateeqah Siddique, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan

    Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan

  • Areeba Musferah, Cholistan University of Veterinary and Animal Sciences (CUVAS) Bahawalpur 63100, Pakistan.

    Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences (CUVAS) Bahawalpur 63100, Pakistan.

  • Areej Safdar, The Women University, Multan, Pakistan.

    Department of Microbiology and Molecular Genetics, The Women University, Multan, Pakistan.

  • Anood Malik, Islamic International Institute of Sciences, Multan, Pakistan

    Department of Allied Health Sciences, Islamic International Institute of Sciences, Multan, Pakistan

References

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Bray, M.-A., Singh, S., Winter, G., Bouchard, J., & Carpenter, A. E. (2018). Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nature Protocols, 13(4), 791–811. https://doi.org/10.1038/nprot.2018.017

Herbst, R. S., Morgensztern, D., & Boshoff, C. (2018). The biology and management of non-small cell lung cancer. Nature, 553(7689), 446–454. https://doi.org/10.1038/nature25183

Wan, J., He, L., & Zhu, D. (2017). Pooled CRISPR screening with single-cell transcriptome readout. Nature Methods, 14(3), 297–301. https://doi.org/10.1038/nmeth.4177

Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346 (6213), 1258096. https://doi.org/10.1126/science.1258096

Chen, S., Sanjana, N. E., Zheng, K., Shalem, O., Lee, K., Shi, X., Scott, D. A., Song, J., Pan, J. Q., Weissleder, R., Lee, H., Zhang, F., & Sharp, P. A. (2018). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 175(7), 1958–1971.e15. https://doi.org/10.1016/j.cell.2018.10.024

Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., Verdine, V., Donghia, N., Daringer, N. M., Freije, C. A., Myhrvold, C., Bhattacharyya, R. P., Livny, J., Regev, A., Koonin, E. V., Hung, D. T., Sabeti, P. C., Collins, J. J., & Zhang, F. (2017). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360(6387), 439–444. https://doi.org/10.1126/science.aaq0179

Sanchez-Rivera, F. J., & Jacks, T. (2015). Applications of the CRISPR-Cas9 system in cancer biology. Nature Reviews Cancer, 15(7), 387–395. https://doi.org/10.1038/nrc3950

Li, W., Xu, H., Xiao, T., Cong, L., Love, M. I., Zhang, F., Irizarry, R. A., Liu, J. S., Brown, M., & Liu, X. S. (2019). MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biology, 20(1), 157. https://doi.org/10.1186/s13059-019-1750-z

Zhang, F., & Gootenberg, J. S. (2020). Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 53, e9. https://doi.org/10.1017/S0033583520000050

Kalbasi, A., & Ribas, A. (2021). Tumour-intrinsic resistance to immune checkpoint blockade. Nature Reviews Immunology, 21(1), 25–39. https://doi.org/10.1038/s41577-020-0391-1

Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2019). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 37(11), 1311–1318. https://doi.org/10.1038/s41587-019-0243-7

Huang, A., Garraway, L. A., Ashworth, A., & Weber, B. (2021). Synthetic lethality as an engine for cancer drug target discovery. Nature Reviews Drug Discovery, 20(2), 91–112. https://doi.org/10.1038/s41573-020-00111-2

Zhang, Y., Chen, Z., & He, L. (2023). High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell, 186(3),612–632.e23. https://doi.org/10.1016/j.cell.2022.12.014

Chen, Z., Zhang, Y., & He, L. (2022). CRISPR-based functional genomics in human dendritic cells. eLife, 11, e72573. https://doi.org/10.7554/eLife.72573

Wang, C., Zhang, B., & Zhang, F. (2023). Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature Protocols, 18(3), 639–675. https://doi.org/10.1038/s41596-022-00767-7

Li, Y., & Zhang, X. (2021). CRISPR activation screens for identifying enhancer elements. Nature Methods, 18(3), 265–272. https://doi.org/10.1038/s41592-020-01036-9

Kim, H. S., & Liu, Y. (2022). Base editing and prime editing for cancer modeling and therapy. Nature Reviews Cancer, 22(7), 389–405. https://doi.org/10.1038/s41568-022-00470-5

Garcia, E. P., Park, J., & Chen, J. (2023). Synthetic lethality screening in patient-derived organoids identifies novel therapeutic vulnerabilities. Cancer Discovery, 13(2), 450–467. https://doi.org/10.1158/2159-8290.CD-22-0555

Park, R. J., Chen, J., & Brown, J. R. (2023). In vivo CRISPR screens reveal lineage-specific dependencies in hematological malignancies. Blood, 141(10), 1184–1197. https://doi.org/10.1182/blood.2022017612

Yuan, J., & Huang, K. (2022). CRISPR-based diagnostics for point-of-care pathogen detection. Nature Biomedical Engineering, 6(3), 255–268. https://doi.org/10.1038/s41551-021-00820-w

Liu, Y., Anderson, D. E., & Zhang, F. (2023). Machine learning for analysis of high-throughput CRISPR screen data. Cell Systems, 14(1), 15–32. https://doi.org/10.1016/j.cels.2022.12.001

Smith, J., Brown, A., & Garcia, B. (2023). Overcoming on-target toxicity in CRISPR cancer immunotherapy. Nature Medicine, 29(1), 25–27. https://doi.org/10.1038/s41591-022-02152-z

Brown, K. R., & Moffat, J. (2023). Functional genomics and CRISPR-Cas9 screens in cancer target discovery. Trends in Cancer, 9(3), 257–271. https://doi.org/10.1016/j.trecan.2022.11.005

Anderson, J. L., Smith, T. R., & Garcia, A. B. (2023). Next-generation delivery systems for in vivo CRISPR screens. Nature Biotechnology, 41(5), 678–689. https://doi.org/10.1038/s41587-022-01647-x

Concordet, J.-P., & Haeussler, M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 46(W1), W242–W245. https://doi.org/10.1093/nar/gky354

Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H., & Valen, E. (2019). CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research, 47(W1), W171–W174. https://doi.org/10.1093/nar/gkz365

Downloads

Published

2025-08-31