MOLECULAR EVALUATION OF SUL1 AND CTX DRUGRESISTANCE AND VIRULANCE GENES IN VIBRIOCHOLERAE IN PESHAWAR, PAKISTAN
DOI:
https://doi.org/10.71000/0fz4dt13Keywords:
Antimicrobial resistance, Cholera, Khyber Pakhtunkhwa, sul1 gene, Vibrio cholerae, Virulence genes, Waterborne diseasesAbstract
Background: Vibrio cholerae remains a major cause of cholera outbreaks in resource-limited countries, particularly in South
Asia. The disease is transmitted through contaminated water and food, leading to acute watery diarrhea, dehydration, and
potentially fatal outcomes if untreated. In Pakistan, recurring outbreaks and the emergence of multidrug-resistant strains of V.
cholerae have raised significant public health concerns. Understanding the epidemiology, antimicrobial resistance, and
virulence profile of circulating strains is critical to improving treatment strategies and outbreak management.
Objective: To determine the antimicrobial susceptibility pattern and molecular detection of sul1 (resistance) and ctx (virulence)
genes in V. cholerae isolates from Peshawar, Pakistan.
Methods: This cross-sectional study was conducted from January to December 2024 at Hayatabad Medical Complex, Peshawar.
A total of 50 stool and rectal swab samples from patients with suspected cholera were cultured and confirmed as V. cholerae
O1, serotype Ogawa. Phenotypic identification included Gram staining, biochemical tests, API-20E, and string test.
Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Molecular detection of sul1
and ctx genes was carried out using PCR with specific primers.
Results: Out of 50 isolates, 28 (56%) were from females and 22 (44%) from males. Age distribution showed 29 (58%) cases in
patients >20 years, 13 (26%) in 11–20 years, and 8 (16%) in 1–10 years. Geographically, Hayatabad reported the highest cases
(6). Cholera cases peaked in August (9) and September (8). Resistance to meropenem and TMP-SMX was observed in 47 (94%)
and 45 (90%) cases, respectively. The ctx gene was detected in 47 (94%) and sul1 in 45 (90%) isolates.
Conclusion: The study highlights a significant prevalence of virulent, multidrug-resistant V. cholerae strains in Peshawar,
particularly during the monsoon season. Targeted interventions, enhanced surveillance, and antimicrobial stewardship are
urgently required.
References
Al-Obaidi, R., Arif, S., Abed, R., Yaaqoob, L., Mahmood, S., Mohammed, S., & Abdulrahman, N. J. O. H. T., Unique Scientific Publishers, Faisalabad, Pakistan. (2023). Vibrio cholerae: epidemiology, surveillance and occurrence in iraq. 2, 80-86.
Balasubramanian, D., Murcia, S., Ogbunugafor, C. B., Gavilan, R., & Almagro-Moreno, S. J. J. o. m. m. (2021). Cholera dynamics: lessons from an epidemic. 70(2), 001298.
Bitew, A., Gelaw, A., Wondimeneh, Y., Ayenew, Z., Getie, M., Tafere, W., . . . Bitew, M. J. B. P. H. (2024). Prevalence and antimicrobial susceptibility pattern of Vibrio cholerae isolates from cholera outbreak sites in Ethiopia. 24(1), 2071.
Brehm, T. T., Berneking, L., Martins, M. S., Dupke, S., Jacob, D., Drechsel, O., . . . Christner, M. J. E. (2021). Heatwave-associated Vibrio infections in Germany, 2018 and 2019. 26(41), 2002041.
Hasan, S. T., Das, S., Faruque, A., Khan, A. I., Clemens, J. D., & Ahmed, T. J. P. n. t. d. (2021). Taking care of a diarrhea epidemic in an urban hospital in Bangladesh: Appraisal of putative causes, presentation, management, and deaths averted. 15(11), e0009953.
Islam, A. D., & Sajida, S. S. (2021). Vibrio cholerae: epidemiology of Cholera, virulence, ecology, biofilms and vibrio phages Brac University].
Islam, M. T., Khan, A. I., Khan, Z. H., Tanvir, N. A., Ahmmed, F., Afrad, M. M. H., . . . Vandenent, M. J. T. J. o. I. D. (2021). Acute watery diarrhea surveillance during the rohingya crisis 2017–2019 in Cox’s Bazar, Bangladesh. 224(Supplement_7), S717-S724.
Jubyda, F. T., Nahar, K. S., Barman, I., Johura, F.-T., Islam, M. T., Sultana, M., . . . Alam, M. (2023). Vibrio cholerae O1 associated with recent endemic cholera shows temporal changes in serotype, genotype, and drug-resistance patterns in Bangladesh. Gut Pathogens, 15(1), 17.
Karatuna, O., Matuschek, E., Åhman, J., Caidi, H., & Kahlmeter, G. J. J. o. A. C. (2024). Vibrio species: development of EUCAST susceptibility testing methods and MIC and zone diameter distributions on which to determine clinical breakpoints. 79(2), 375-382.
Mavrouli, M., Mavroulis, S., Lekkas, E., & Tsakris, A. J. M. (2023). The impact of earthquakes on public health: A narrative review of infectious diseases in the post-disaster period aiming to disaster risk reduction. 11(2), 419.
Mishra, R. K. J. B. J. o. M., & Studies, A. (2023). Fresh water availability and its global challenge. 4(3), 1-78.
Montero, D. A., Vidal, R. M., Velasco, J., George, S., Lucero, Y., Gómez, L. A., . . . O’Ryan, M. J. F. i. M. (2023). Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. 10, 1155751.
Muñoz-Provencio, D., & Yebra, M. J. J. I. j. o. m. s. (2023). Gut microbial sialidases and their role in the metabolism of human milk sialylated glycans. 24(12), 9994.
Nasreen, T., Hussain, N. A., Ho, J. Y., Aw, V. Z. J., Alam, M., Yanow, S. K., & Boucher, Y. F. J. P. (2022). Assay for evaluating the abundance of Vibrio cholerae and its O1 serogroup subpopulation from water without DNA extraction. 11(3), 363.
OGBU, J. T. (2022). Examining the impact of protracted conflicts on mortality in humanitarian emergencies Université catholique de Louvain].
Ramamurthy, T., & Ghosh, A. J. J. o. D. R. (2021). A re-look at cholera pandemics from early times to now in the current era of epidemiology. 16(1), 110-117.
Rangama, S., Lidbury, I. D., Holden, J. M., Borsetto, C., Murphy, A. R., Hawkey, P. M., . . . Chemotherapy. (2021). Mechanisms involved in the active secretion of CTX-M-15 β-lactamase by pathogenic Escherichia coli ST131. 65(10), 10.1128/aac. 00663-00621.
Schultz, H. (2024). A Climate Change Calamity: Assessing The Impact Of Flooding On Waterborne Disease Burden In Pakistan.
Shrestha, B. K., & Shakya, J. J. N. J. o. B. (2021). Simple method devised for rapid isolation and identification of Vibrio cholerae from water resources of Sunsari District, Nepal. 9(2), 33-38.
Thaotumpitak, V., Sripradite, J., Atwill, E. R., & Jeamsripong, S. J. P. (2023). Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. 11, e14896.
Westerström, P., Ås, C. G., & Dragsted, U. B. J. H. (2024). Characterising virulence in a nontoxigenic non-O1/non-O139 Vibrio cholerae isolate imported from Vietnam. 10(18).
Wiens, K. E., Xu, H., Zou, K., Mwaba, J., Lessler, J., Malembaka, E. B., . . . Lee, E. C. J. P. m. (2023). Estimating the proportion of clinically suspected cholera cases that are true Vibrio cholerae infections: A systematic review and meta-analysis. 20(9), e1004286.
Worku Demlie, Y., Gedefaw, A., Jeon, Y., Hailu, D., Getahun, T., Mogeni, O. D., . . . Kim, D. R. J. C. I. D. (2024). Retrospective analysis of cholera/acute watery diarrhea outbreaks in Ethiopia from 2001 to 2023: incidence, case fatality rate, and seasonal and multiyear epidemic patterns. 79(Supplement_1), S8-S19.
Xu, J., Abe, K., Kodama, T., Sultana, M., Chac, D., Markiewicz, S. M., . . . Alam, M. J. m. (2025). The role of morphological adaptability in Vibrio cholerae’s motility. 16(1), e02469-02424.
Yao, H., Liu, J., Jiang, X., Chen, F., Lu, X., Zhang, J. J. I., & resistance, d. (2021). Analysis of the clinical effect of combined drug susceptibility to guide medication for carbapenem-resistant klebsiella pneumoniae patients based on the kirby–bauer disk diffusion method. 79-87.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Maria Khan, Salman Ahmed, Muhammad Rabnawaz, Farah Shireen, Muhammad Mansoor Kamal, Kabir Khan, Muhammad Umair, Waqar Saeed, Muneeba, Madiha Iqbal (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.