

INVESTIGATIONAL REVIEW OF GENETICS CANCER OUTCOMES BY DNA REFLECTION IN PEOPLE WITH AND WITHOUT GENETIC CANCER GENES GENETICALLY

Narrative Review

Irfan Ishaque^{1*}, Duaa Sheeraz Samoo², Muhammad Sohaib Hassan³, Mariam Kamran⁴, Safia Ghulam Rasool⁵, Abbas Ali⁶, Arshad Aziz⁷.

¹Department of Zoology, Government College University, Lahore, Pakistan.

²Senior Research Assistant, Aga Khan Research and Training Centre, Matiari, Pakistan.

³Medical Laboratory Technologist, Armed Forces Institute of Pathology (AFIP), Rawalpindi, Pakistan.

⁴MPhil in Molecular Pathology and Genomics, Forman Christian College (A Chartered University), Lahore, Pakistan.

⁵MSPH Student, Aga Khan University, Karachi, Pakistan.

⁶Tehran University of Medical Sciences, Tehran, Iran.

⁷Khyber Teaching Hospital, Peshawar, Pakistan.

Corresponding Author: Irfan Ishaque. Department of Zoology, Government College University, Lahore, Pakistan, iamirfanishaque@gmail.com

Acknowledgement: The authors would like to acknowledge the contributions of researchers and clinicians whose work has advanced the field of cancer genetics. We also thank the patients and families who participate in research, making these insights possible.

Conflict of Interest: None

Grant Support & Financial Support: None

ABSTRACT

Background: The role of germline genetics in cancer is rapidly evolving beyond risk assessment. While pathogenic variants in high-penetrance genes are established risk factors, their influence on therapeutic response and long-term outcomes, alongside the enigmatic roles of variants of uncertain significance (VUS) and polygenic risk, is a critical area of investigation. This narrative review explores the expanding impact of the germline genome on cancer care.

Objective: This review aims to synthesize current evidence on how germline genetic factors, both established and potential, influence cancer outcomes, comparing trajectories between individuals with and without identified hereditary cancer syndromes.

Main Discussion Points: Key themes include the validated prognostic and predictive utility of high-penetrance genes like *BRCA* and DNA mismatch repair genes in guiding targeted therapy. The discussion also encompasses the clinical challenges posed by VUS, the emerging potential of polygenic risk scores, and the profound impact of germline genetics on somatic evolution and clonal selection. Significant methodological limitations and the lack of diversity in genomic research are critically analyzed as major constraints within the existing literature.

Conclusion: Evidence strongly supports integrating germline testing into oncology to guide treatment for specific syndromes. However, the broader application of genetics for prognostication requires further validation. Future efforts must prioritize inclusive, large-scale prospective studies to translate the full potential of germline information into equitable, personalized cancer care.

Keywords: Germline Genetics; Cancer Outcomes; Hereditary Cancer Syndromes; Variants of Uncertain Significance; Polygenic Risk Score; Precision Oncology.

INTRODUCTION

Cancer remains one of the most formidable challenges to global public health, with its pathogenesis intricately linked to the complex interplay of genetic and environmental factors. The role of heredity in cancer susceptibility has been a cornerstone of oncological research for decades, culminating in the identification of numerous high-penetrance genes, such as *BRCA1*, *BRCA2*, and *TP53*, which confer a significantly elevated lifetime risk of developing malignancies. Epidemiological data underscore the magnitude of this issue; it is estimated that 5–10% of all cancers are attributable to inherited pathogenic variants in known cancer susceptibility genes, translating to a substantial global burden of disease (1). However, this established statistic belies a far more complex genetic reality. A significant proportion of individuals with a strong familial aggregation of cancer lack a identifiable mutation in these classic high-risk genes, suggesting the involvement of other genetic elements or mechanisms that remain elusive to conventional testing paradigms (2). The current landscape of cancer genetics is rapidly evolving beyond the binary presence or absence of a pathogenic variant in a well-characterized gene. Advancements in genomic technologies, particularly next-generation sequencing (NGS), have unveiled a vast spectrum of genetic variation whose clinical significance is often ambiguous. This includes variants of uncertain significance (VUS), low-penetrance alleles, alterations in non-coding regulatory regions, and the potential influence of polygenic risk scores (PRS) that aggregate the effects of numerous common single-nucleotide polymorphisms (3). Furthermore, the concept of genetic "sleepers" or dormant predispositions—latent genetic susceptibilities that may require a specific environmental trigger or a secondary somatic hit to initiate carcinogenesis—presents a compelling yet poorly understood area of research (4).

The conventional dichotomy of "genetic" versus "sporadic" cancer is increasingly seen as an oversimplification, as it is now apparent that all cancer is genetic in origin at the somatic level, and the germline genetic contribution exists on a continuum of variable expressivity and penetrance. Despite these advancements, a critical knowledge gap persists in understanding the complete spectrum of germline genetics that influences cancer outcomes. The primary focus of clinical genetics has historically been on cancer risk prediction and prevention. Far less is understood about how an individual's germline genetic architecture, encompassing both high-penetrance mutations and the broader constellation of lesser-known genetic factors, might modulate the clinical course of cancer after diagnosis—a field of study now known as pharmacogenomics and cancer outcomes research. For instance, do individuals with *BRCA*-associated breast cancers experience different response rates to platinum-based chemotherapy or PARP inhibitors compared to those with phenotypically similar but genetically sporadic tumours? More intriguingly, could individuals without a known pathogenic mutation but with a high PRS or specific VUS profiles have distinct tumour behaviours or therapeutic responses? The unclear links between this expanded definition of the "genetic cancer genome" and long-term oncological outcomes, including overall survival, disease-free survival, and treatment-related toxicity, represent a significant frontier in personalized medicine (5). This narrative review aims to synthesize current evidence and provide an investigational overview of cancer outcomes as influenced by the reflection of an individual's germline DNA, with a specific focus on comparing and contrasting trajectories between those with and without established hereditary cancer syndromes.

The scope will encompass an examination of not only canonical high-penetrance genes but also the roles of VUS, low-penetrance alleles, and polygenic risk models in shaping the clinical narrative of a cancer diagnosis. It will explore the hypothesis that the genetic basis of cancer is not a simple on/switch for risk but a complex modulator of the entire disease arc, from aetiology to treatment response and survivorship. The significance of this review lies in its potential to reframe the clinical utility of genetic information. Moving beyond a sole focus on risk assessment and prophylactic intervention, a deeper understanding of the genotype-outcome relationship could inform more tailored and effective treatment strategies from the outset of diagnosis. It could provide insights into why patients with seemingly identical cancers and treatment regimens experience vastly different outcomes. By elucidating these unclear links, this review seeks to highlight the importance of integrating comprehensive germline genetic profiling into oncology care not just for a select few, but as a component of a broader, more nuanced approach to personalizing cancer medicine and improving prognostic precision for all patients.

THEMATIC DISCUSSION

The Prognostic Implications of Canonical High-Penetrance Genes

The most substantiated body of evidence concerning germline genetics and cancer outcomes revolves around high-penetrance genes. For carriers of pathogenic variants in genes like BRCA1 and BRCA2, the implications extend far beyond elevated risk, significantly influencing tumour biology and therapeutic response. A consistent finding across multiple studies is that BRCA-associated breast cancers are more frequently triple-negative or high-grade, presenting a more aggressive histological profile at diagnosis (6). However, this apparent aggressivity is counterbalanced by a unique therapeutic vulnerability. Due to their inherent deficiency in homologous recombination repair (HRD), these tumours demonstrate heightened sensitivity to DNA-damaging agents, particularly platinum salts and PARP inhibitors. A synthesis of clinical trial data reveals that metastatic BRCA-mutated breast cancer patients treated with PARP inhibitors like olaparib exhibit significantly improved progression-free survival compared to those receiving standard chemotherapy, underscoring a direct link between germline status and a superior response to a targeted therapy (7). Similarly, in ovarian cancer, BRCA mutation status is a well-validated predictive biomarker for both platinum sensitivity and prolonged overall survival following PARP inhibitor maintenance therapy, establishing a paradigm where germline genetics directly dictate first-line treatment strategies (8).

Beyond BRCA: Expanding the Spectrum of Actionable Hereditary Syndromes

The narrative of germline-directed outcomes is not confined to BRCA-related cancers. Lynch syndrome, caused by mutations in DNA mismatch repair (MMR) genes such as MLH1, MSH2, MSH6, and PMS2, offers another compelling example. While known for predisposing to colorectal and endometrial cancers, the germline MMR-deficient (dMMR) phenotype has profound implications for treatment. Tumours arising in this context are characterized by high microsatellite instability (MSI-H) and hypermutation, making them exceptionally responsive to immune checkpoint inhibitors. Pivotal studies have demonstrated that patients with advanced MSI-H cancers, regardless of tissue of origin, achieve remarkable and durable responses to pembrolizumab, a programmed death 1 (PD-1) inhibitor (9). This finding effectively created a tumour-agnostic indication for immunotherapy, fundamentally rooted in the patient's germline genetic makeup. Consequently, identifying a Lynch syndrome mutation not only dictates surveillance protocols for relatives but also directly informs the most effective systemic therapy for the patient's advanced cancer, potentially transforming a once-dismal prognosis into one of long-term disease control.

The Enigmatic Role of Variants of Uncertain Significance (VUS)

As multi-gene panel testing becomes commonplace in oncology clinics, the detection of VUS has emerged as a major clinical challenge. A VUS represents a genetic alteration for which the association with cancer risk is currently unknown, leaving clinicians and patients in a diagnostic and prognostic quandary. The sheer volume of possible rare variants ensures that a VUS is a frequent finding, often reported in over 40% of tests in some populations (10). The central controversy lies in their clinical management: should a VUS in a gene like ATM or CHEK2 be treated as a potential high-risk allele, influencing decisions for aggressive surgery or chemoprevention, or should it be dismissed as a benign polymorphism? The problem is exacerbated by the fact that the functional impact of most VUS remains uncharacterized. Some studies have attempted to reclassify VUS through multifactorial probability models incorporating family history and tumour pathology, but this is not yet standard practice (11). This area represents a critical gap in knowledge. The potential for a subset of VUS to confer moderate risks or to modulate outcomes in the presence of other genetic or environmental factors is a subject of intense investigation. Misinterpretation can lead to either unnecessary medical interventions or a false sense of security, highlighting the urgent need for large-scale collaborative efforts to aggregate data for VUS reclassification.

Polygenic Risk Scores: The Aggregate Effect of Common Variation

The focus on rare, high-penetrance mutations overlooks the contribution of common, low-penetrance genetic variants that collectively can exert a substantial influence on cancer susceptibility and potentially, outcomes. Polygenic risk scores (PRS) are computational tools that aggregate the effects of hundreds to millions of such single-nucleotide polymorphisms (SNPs) to quantify an individual's inherited risk relative to the population average. While most research has focused on risk prediction, emerging evidence suggests PRS may also have prognostic value. For instance, in estrogen receptor-positive breast cancer, a high PRS has been associated not only with an increased risk of developing the disease but also with a higher risk of contralateral breast cancer and potentially a different disease trajectory (12). The hypothesis is that the genetic architecture that predisposes to cancer initiation might also influence its biological aggressiveness or response to therapy. However, this field is in its infancy, and the clinical utility of PRS in guiding treatment decisions remains unproven. Significant controversies exist regarding the portability of PRS across diverse ancestral populations, as most scores have been developed in cohorts of European descent, raising concerns about health disparities if applied globally without validation (13).

Germline Genetics in Somatic Evolution and Clonal Selection

A nascent area of research explores how the germline genetic background shapes the somatic evolution of a tumour. The concept of genetic "sleepers" posits that a predisposing germline variant creates a cellular environment permissive for carcinogenesis, but requires subsequent somatic hits to unleash a malignant phenotype. This interplay is elegantly demonstrated in myeloproliferative neoplasms, where a germline polymorphism in the JAK2 gene predisposes individuals to acquiring the somatic JAK2 V617F mutation that drives the disease (14). Furthermore, the germline genome can influence which somatic mutations are selected for during tumour evolution and treatment. A patient's pharmacogenetic profile, determined by germline variants in drug-metabolizing enzymes (e.g., CYP2D6 for tamoxifen) or drug transporters, can alter the effective dose of a therapy received, applying selective pressure on the tumour and potentially driving the emergence of resistant clones (15). This intricate dance between the inherited genome and the acquired somatic genome is a critical determinant of therapeutic success or failure, suggesting that optimal cancer treatment requires an integrated analysis of both.

The Challenge of Penetrance and Modifier Genes

The variable expressivity and incomplete penetrance observed in many hereditary cancer syndromes underscore that carrying a pathogenic variant is not a deterministic sentence. Many BRCA carriers never develop cancer, while others present with devastatingly early-onset disease. This variability is attributed to modifier genes—other genetic loci in the genome that can ameliorate or exacerbate the effects of the primary risk allele. Identifying these genetic modifiers is a monumental task but holds immense promise for refining risk prediction and understanding outcome disparities. For example, research has suggested that genetic variants in pathways that interact with BRCA, such as those involved in alternative DNA repair mechanisms or immune surveillance, may influence the age of onset and the specific type of cancer that develops in carriers (16). The ability to stratify risk within families based on a polygenic modifier score would represent a monumental advance in personalized prevention and could similarly be applied to prognostication after diagnosis, moving beyond a one-gene-fits-all approach to patient management.

Methodological Considerations and the Imperative for Diverse Biobanks

The advancement of this field is heavily constrained by methodological limitations. Many studies linking germline genetics to outcomes are retrospective, underpowered, and subject to significant confounding factors. The gold standard would require prospective, large-scale cohorts with comprehensive germline sequencing, detailed clinical annotation, and long-term follow-up. Initiatives like All of Us and the UK Biobank are beginning to provide such resources, but cancer-specific outcomes data are still maturing (17). A paramount issue is the stark lack of diversity in most genetic databases. The overwhelming majority of genomic studies have been conducted in populations of European ancestry, severely limiting the generalizability of findings related to VUS interpretation, PRS construction, and established gene-cancer associations (18). This lack of inclusivity not only perpetuates health disparities but also means that the full spectrum of human genetic variation influencing cancer outcomes remains largely unexplored. Future research must prioritize the inclusion of diverse populations to ensure that the benefits of precision oncology are equitably distributed.

CRITICAL ANALYSIS AND LIMITATIONS OF EXISTING LITERATURE

While the reviewed literature provides compelling evidence for the role of germline genetics in modulating cancer outcomes, a critical appraisal reveals significant methodological constraints that temper the strength of many conclusions and highlight avenues for necessary future research. A predominant limitation across a substantial portion of the studies, particularly those investigating rare genetic events or specific gene-outcome relationships, is the constraint of small sample sizes. Research on outcomes for carriers of mutations in less common genes, such as PALB2 or RAD51C, or those exploring the nuanced role of VUS, often relies on single-institution cohorts or small consortium datasets. These underpowered studies are inherently limited in their ability to detect statistically significant, clinically meaningful differences in outcomes, such as modest improvements in survival or variations in treatment toxicity, leading to type II errors and inconclusive findings (19). This problem is exacerbated by the rarity of many pathogenic variants in the general population, necessitating international collaboration to achieve the statistical power required for robust analysis. Closely related to the issue of sample size is the pervasive reliance on retrospective observational study designs. The field is notably devoid of randomized controlled trials (RCTs) where patients are randomized based on their germline status, for obvious ethical and practical reasons. Consequently, the evidence linking a germline mutation to a better or worse outcome is almost exclusively derived from retrospective cohort or case-control studies. These designs are highly susceptible to confounding biases. For instance, the observed

superior survival of BRCA carriers with ovarian cancer could be influenced by lead-time bias (earlier diagnosis due to heightened surveillance), confounding by associated variables like better performance status, or differences in treatment intensity that are not fully accounted for in multivariate analyses (20). While statistical adjustments are attempted, residual confounding remains a persistent threat to the internal validity of these observational findings, making it challenging to definitively attribute outcome differences solely to the germline variant. Another critical layer of methodological bias is the issue of selection bias, which severely impacts the generalizability of results.

Many studies recruiting patients for germline testing are conducted at large tertiary care academic centers, which tend to treat patients with more advanced or complex diseases, or those with strong family histories. This creates a cohort that is not representative of the broader population of cancer patients or even of all carriers of a specific mutation. For example, a study on BRCA outcomes based on a cohort from a high-risk clinic may overestimate the penetrance and aggressivity of the associated cancers compared to a population-based cohort that includes non-penetrant carriers (21). This bias limits the external validity of the findings and complicates the application of results to the general oncology patient population seen in community practice settings. The interpretation of outcomes is further complicated by significant variability in measurement and definition across studies. There is no universal standard for defining "response" or "long-term survival," and the choice of endpoint can dramatically alter the conclusions of a study. Some studies may prioritize progression-free survival, while others focus on overall survival or disease-specific survival. In the context of genetic modifiers and PRS, the algorithms and SNP sets used to calculate risk scores are not standardized, making direct comparisons between studies fraught with difficulty (22). This lack of methodological homogeneity creates a fragmented evidence base where synthesizing results requires cautious interpretation and limits the ability to perform meaningful meta-analyses. A profound and widely acknowledged limitation that permeates the entire field of cancer genetics is the stark lack of diversity in research cohorts. The overwhelming majority of studies validating the clinical actionability of genes, classifying VUS, and developing PRS have been conducted in populations of European ancestry. This creates a critical gap in knowledge and a serious health equity issue. The prevalence and penetrance of pathogenic variants, the spectrum and clinical meaning of VUS, and the predictive power of PRS can vary significantly across different ancestral groups (23).

Consequently, the clinical tools and guidelines derived from predominantly Eurocentric data may be inaccurate, ineffective, or even harmful when applied to patients of African, Asian, Hispanic, or Indigenous descent. This severely limits the generalizability of existing findings and risks exacerbating existing health disparities by providing suboptimal care to underrepresented populations. Finally, the literature is likely influenced by publication bias, where studies with positive or statistically significant findings are more likely to be published than those with null or negative results. This creates an inflated perception of the strength and consistency of associations between certain germline variants and outcomes. For instance, multiple small studies suggesting a novel gene-outcome relationship may be published, while a larger, better-powered study failing to replicate the finding might remain in the file drawer (24). This skews the overall evidence base towards optimism and can misdirect future research efforts and clinical resources. Together, these limitations underscore that while the existing literature provides a foundational and promising framework for understanding the germline-genome-outcome axis, its conclusions must be interpreted with caution. The field demands more prospective, large-scale, and inclusive research initiatives to overcome these constraints and deliver on the full promise of equitable and precise cancer care.

IMPLICATIONS AND FUTURE DIRECTIONS

The synthesis of current evidence underscores a paradigm shift in oncology, moving from a sole focus on germline genetics for risk assessment towards its integration as a critical determinant of therapeutic strategy and prognostic stratification. The immediate clinical implication is the necessity of broadening the scope of germline testing beyond the traditional criteria based solely on personal or family history. To fully leverage the predictive power of mutations in genes like BRCA and the MMR genes, testing should be considered a integral component of the standard diagnostic workup for all patients with specific cancer types, such as high-grade serous ovarian cancer, pancreatic cancer, and metastatic prostate cancer, as recommended by evolving guidelines from organizations like the National Comprehensive Cancer Network (NCCN) (25). This ensures that every patient with a potentially actionable germline variant is identified and can benefit from life-extending targeted therapies, such as PARP or immune checkpoint inhibitors, thereby personalizing treatment from the outset. Furthermore, the management of VUS must be standardized across genetic testing laboratories and clinical practices, emphasizing the critical role of multidisciplinary tumor boards and genetic counseling to prevent misinterpretation and avoid either unnecessary interventions or inappropriate reassurance. These advancements in understanding necessitate concurrent evolution in health policy and clinical guidelines. Policymakers and insurance providers must recognize the dual utility of germline testing—for both

familial risk and direct treatment guidance—and ensure coverage is aligned with these expanded indications. Guidelines need to be updated to provide clearer frameworks on the management of patients with moderate-penetrance alleles and high PRS, areas currently fraught with ambiguity. Moreover, there is an urgent ethical and practical imperative for policy to mandate and fund efforts to increase diversity in genomic research. This includes supporting initiatives that actively recruit participants from underrepresented populations and allocate resources for the development of ancestrally specific PRS and VUS classification databases (26). Without such directed policy action, the promise of precision medicine risks becoming a driver of health disparity rather than a solution.

Despite progress, numerous profound questions remain unanswered, charting the course for future research. A primary gap lies in definitively establishing whether the presence of a germline pathogenic variant inherently confers a different prognosis compared to sporadic cases, after rigorously controlling for stage, treatment received, and other confounding factors. The biological mechanisms through which modifier genes and the broader polygenic background influence penetrance and treatment response are almost entirely unexplored. Furthermore, the concept of "sleeping" or latent genetic predispositions requires validation; identifying the environmental co-factors or secondary genetic hits that awaken these susceptibilities could open new avenues for prevention. The long-term outcomes and unique toxicity profiles of targeted therapies in germline mutation carriers also demand dedicated study, as their underlying genetic condition may predispose them to distinct adverse events (27). To robustly address these questions, future research must employ more rigorous and inclusive study designs. Prospective, multi-center observational cohorts that enroll patients at diagnosis and perform universal germline sequencing are essential to eliminate selection bias and provide a true representation of the prevalence and impact of genetic variants. For questions of therapeutic efficacy, innovative trial designs such as basket trials (which enroll patients based on their genetic marker regardless of cancer type) and umbrella trials (which test multiple targeted therapies within a single cancer type) are particularly well-suited to efficiently study rare genetic subgroups (28). Crucially, all future studies must prioritize the recruitment of diverse, population-representative cohorts as a fundamental requirement, not an afterthought. Investment in functional genomics studies is also paramount to characterize the multitude of VUS and determine their pathological significance, moving beyond association towards mechanistic understanding. By embracing these directions, the field can transition from observing associations to definitively establishing causal links between the germline genome and cancer outcomes, ultimately fulfilling the promise of delivering truly personalized and equitable cancer care to all patients.

CONCLUSION

In conclusion, this investigational review synthesizes a compelling, albeit evolving, body of evidence indicating that the reflection of an individual's germline DNA extends far beyond cancer risk predisposition, actively modulating tumour biology, therapeutic response, and long-term outcomes. The most robust evidence supports the integration of testing for high-penetrance genes like **BRCA1/2** and MMR genes into standard oncologic care, as their status provides powerful predictive biomarkers for targeted therapies, thereby fundamentally altering treatment paradigms and improving survival for carriers. However, the clinical utility of a vast portion of the genetic landscape, including VUS, low-penetrance alleles, and polygenic risk scores, remains hampered by significant research gaps, methodological limitations in existing studies, and a critical lack of diversity in genomic databases. Therefore, while the current evidence firmly supports the use of germline genetics to guide treatment for specific hereditary syndromes, its broader application in prognostication requires a cautious and nuanced approach. It is strongly recommended that clinicians advocate for comprehensive germline testing when clinically indicated and actively participate in multidisciplinary discussions to interpret these results within the full context of the patient's presentation, while simultaneously urging researchers and policymakers to prioritize large-scale, prospective, and inclusive studies to translate the full potential of the germline genome into equitable and precise cancer care for all patients.

AUTHOR CONTRIBUTION

Author	Contribution
Irfan Ishaque*	Substantial Contribution to study design, analysis, acquisition of Data Manuscript Writing Has given Final Approval of the version to be published
Duaa Sheeraz Samoo	Substantial Contribution to study design, acquisition and interpretation of Data Critical Review and Manuscript Writing Has given Final Approval of the version to be published
Muhammad Sohaib Hassan	Substantial Contribution to acquisition and interpretation of Data Has given Final Approval of the version to be published
Mariam Kamran	Contributed to Data Collection and Analysis Has given Final Approval of the version to be published
Safia Ghulam Rasool	Contributed to Data Collection and Analysis Has given Final Approval of the version to be published
Abbas Ali	Substantial Contribution to study design and Data Analysis Has given Final Approval of the version to be published
Arshad Aziz	Contributed to study concept and Data collection Has given Final Approval of the version to be published

REFERENCES

1. Hu C, Hart SN, Gnanaolivu R, et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. *N Engl J Med.* 2021;384(5):440-451. doi:10.1056/NEJMoa2005936
2. Kurian AW, Abrahamse P, Furgal A, Ward KC, Hamilton AS, Hodan R, Tocco R, Liu L, Berek JS, Hoang L, Yussuf A. Germline genetic testing after cancer diagnosis. *Jama.* 2023 Jul 3;330(1):43-51.
3. Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: Evolution of the treatment paradigm. *Cancer Treat Rev.* 2020;86:102019. doi:10.1016/j.ctrv.2020.102019
4. Hodgson SV, Foulkes WD, Maher ER, Turnbull C. Inherited Susceptibility to Cancer: Past, Present and Future. *Annals of Human Genetics.* 2025 Sep;89(5):354-65.
5. Pradat Y, Viot J, Yurchenko AA, Gunbin K, Cerbone L, Deloger M, Grisay G, Verlingue L, Scott V, Padoleau I, Panunzi L. Integrative pan-cancer genomic and transcriptomic analyses of refractory metastatic cancer. *Cancer discovery.* 2023 May 4;13(5):1116-43.
6. Tung NM, Boughey JC, Pierce LJ, et al. Management of Hereditary Breast Cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. *J Clin Oncol.* 2020;38(18):2080-2106. doi:10.1200/JCO.20.00299

7. Robson ME, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Tung N, Armstrong A, Dymond M, Fielding A. OlympiAD extended follow-up for overall survival and safety: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. *European Journal of Cancer*. 2023 May 1;184:39-47.
8. Banerjee S, Moore KN, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, Lisyanskaya A, Floquet A, Leary A, Sonke GS. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial. *The Lancet Oncology*. 2021 Dec 1;22(12):1721-31.
9. Marabelle A, Le DT, Ascierto PA, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. *J Clin Oncol*. 2020;38(1):1-10. doi:10.1200/JCO.19.02105
10. Burke W, Parens E, Chung WK, Berger SM, Appelbaum PS. The challenge of genetic variants of uncertain clinical significance: a narrative review. *Annals of internal medicine*. 2022 Jul;175(7):994-1000.
11. Fortuno C, Lee K, Olivier M, et al. Specifications of the ACMG/AMP variant interpretation guidelines for germline PALB2 mutation detection. *Genet Med*. 2021;23(8):1415-1423. doi:10.1038/s41436-021-01151-8
12. Allman R, Mu Y, Dite GS, Spaeth E, Hopper JL, Rosner BA. Validation of a breast cancer risk prediction model based on the key risk factors: family history, mammographic density and polygenic risk. *Breast Cancer Research and Treatment*. 2023 Apr;198(2):335-47.
13. Hao L, Kraft P, Berriz GF, Hynes ED, Koch C, Koratgegere V Kumar P, Parpattedar SS, Steeves M, Yu W, Antwi AA, Brunette CA. Development of a clinical polygenic risk score assay and reporting workflow. *Nature medicine*. 2022 May;28(5):1006-13.
14. Lim J, Ross DM, Brown AL, Scott HS, Hahn CN. Germline genetic variants that predispose to myeloproliferative neoplasms and hereditary myeloproliferative phenotypes. *Leukemia research*. 2024 Nov 1;146:107566.
15. Mulder TA, de With M, Del Re M, Danesi R, Mathijssen RH, van Schaik RH. Clinical CYP2D6 genotyping to personalize adjuvant tamoxifen treatment in ER-positive breast cancer patients: current status of a controversy. *Cancers*. 2021 Feb 12;13(4):771.
16. Cheng HH, Shevach JW, Castro E, Couch FJ, Domchek SM, Eeles RA, Giri VN, Hall MJ, King MC, Lin DW, Loeb S. BRCA1, BRCA2, and associated cancer risks and management for male patients: a review. *JAMA oncology*. 2024 Sep 1.
17. Conroy MC, Lacey B, Bešević J, Omiyale W, Feng Q, Effingham M, Sellers J, Sheard S, Pancholi M, Gregory G, Busby J. UK Biobank: a globally important resource for cancer research. *British Journal of Cancer*. 2023 Feb 16;128(4):519-27.
18. Aganezov S, Yan SM, Soto DC, Kirsche M, Zarate S, Avdeyev P, Taylor DJ, Shafin K, Shumate A, Xiao C, Wagner J. A complete reference genome improves analysis of human genetic variation. *Science*. 2022 Apr 1;376(6588):eabl3533.
19. Breen KE, Katona BW, Catchings A, Ranganathan M, Marcell V, Latham A, Yurgelun MB, Stadler ZK. An updated counseling framework for moderate-penetrance colorectal cancer susceptibility genes. *Genetics in Medicine*. 2022 Dec 1;24(12):2587-90.
20. Leslie KK, Filiaci VL, Mallen AR, Thiel KW, Devor EJ, Moxley K, Richardson D, Mutch D, Secord AA, Tewari KS, McDonald ME. Mutated p53 portends improvement in outcomes when bevacizumab is combined with chemotherapy in advanced/recurrent endometrial cancer: An NRG Oncology study. *Gynecologic oncology*. 2021 Apr 1;161(1):113-21.
21. Stiller S, Drukewitz S, Lehmann K, Hentschel J, Strehlow V. Clinical impact of polygenic risk score for breast cancer risk prediction in 382 individuals with hereditary breast and ovarian cancer syndrome. *Cancers*. 2023 Aug 2;15(15):3938.
22. Mars N, Widén E, Kerminen S, et al. The role of polygenic risk and susceptibility genes in breast cancer over the course of life. *Nat Commun*. 2020;11(1):6383. doi:10.1038/s41467-020-19966-5
23. Corpas M, Pius M, Poburennaya M, Guio H, Dwek M, Nagaraj S, Lopez-Correa C, Popejoy A, Fatumo S. Bridging genomics' greatest challenge: The diversity gap. *Cell genomics*. 2025 Jan 8;5(1).

24. Nguyen PY, Kanukula R, McKenzie JE, Alqaidoom Z, Brennan SE, Haddaway NR, Hamilton DG, Karunananthan S, McDonald S, Moher D, Nakagawa S. Changing patterns in reporting and sharing of review data in systematic reviews with meta-analysis of the effects of interventions: cross sectional meta-research study. *bmj*. 2022 Nov 22;379.
25. Daly MB, Pal T, Berry MP, Buys SS, Dickson P, Domchek SM, Elkhanany A, Friedman S, Goggins M, Hutton ML, Karlan BY. Genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 2.2021, NCCN clinical practice guidelines in oncology. *Journal of the National Comprehensive Cancer Network*. 2021 Jan 6;19(1):77-102.
26. Kolopenuk J. Rethinking the Genomic Diversity Problem: Rejecting Inclusion in Defense of Indigenous Sovereignty. *Annual Review of Genomics and Human Genetics*. 2025 Apr 4;26.
27. Moore KN, du Bois A. Homologous recombination deficiency testing in first-line ovarian cancer. *Annals of Oncology*. 2022 Mar 1;33(3):231-3.
28. Thomas DS, Cisneros LH, Anderson AR, Maley CC. In silico investigations of multi-drug adaptive therapy protocols. *Cancers*. 2022 May 30;14(11):2699.